Skip to main content

Hive 函数

通过 HiveModule 使用 Hive 内置函数

在 Flink SQL 和 Table API 中,可以通过系统内置的 HiveModule 来使用 Hive 内置函数,

详细信息,请参考 HiveModule。


String name = "myhive";
String version = "2.3.4";

tableEnv.loadModue(name, new HiveModule(version));
  • 请注意旧版本的部分 Hive 内置函数存在线程安全问题。 我们建议用户及时通过补丁修正 Hive 中的这些问题。

Hive 用户自定义函数(User Defined Functions)

在 Flink 中用户可以使用 Hive 里已经存在的 UDF 函数。

支持的 UDF 类型包括:

  • UDF
  • GenericUDF
  • GenericUDTF
  • UDAF
  • GenericUDAFResolver2

在进行查询规划和执行时,Hive UDF 和 GenericUDF 函数会自动转换成 Flink 中的 ScalarFunction,GenericUDTF 会被自动转换成 Flink 中的 TableFunction,UDAF 和 GenericUDAFResolver2 则转换成 Flink 聚合函数(AggregateFunction).

想要使用 Hive UDF 函数,需要如下几步:

  • 通过 Hive Metastore 将带有 UDF 的 HiveCatalog 设置为当前会话的 catalog 后端。
  • 将带有 UDF 的 jar 包放入 Flink classpath 中,并在代码中引入。
  • 使用 Blink planner。

使用 Hive UDF

假设我们在 Hive Metastore 中已经注册了下面的 UDF 函数:

/**
* 注册为 'myudf' 的简单 UDF 测试类.
*/
public class TestHiveSimpleUDF extends UDF {

public IntWritable evaluate(IntWritable i) {
return new IntWritable(i.get());
}

public Text evaluate(Text text) {
return new Text(text.toString());
}
}

/**
* 注册为 'mygenericudf' 的普通 UDF 测试类
*/
public class TestHiveGenericUDF extends GenericUDF {

@Override
public ObjectInspector initialize(ObjectInspector[] arguments) throws UDFArgumentException {
checkArgument(arguments.length == 2);

checkArgument(arguments[1] instanceof ConstantObjectInspector);
Object constant = ((ConstantObjectInspector) arguments[1]).getWritableConstantValue();
checkArgument(constant instanceof IntWritable);
checkArgument(((IntWritable) constant).get() == 1);

if (arguments[0] instanceof IntObjectInspector ||
arguments[0] instanceof StringObjectInspector) {
return arguments[0];
} else {
throw new RuntimeException("Not support argument: " + arguments[0]);
}
}

@Override
public Object evaluate(DeferredObject[] arguments) throws HiveException {
return arguments[0].get();
}

@Override
public String getDisplayString(String[] children) {
return "TestHiveGenericUDF";
}
}

/**
* 注册为 'mygenericudtf' 的字符串分割 UDF 测试类
*/
public class TestHiveUDTF extends GenericUDTF {

@Override
public StructObjectInspector initialize(ObjectInspector[] argOIs) throws UDFArgumentException {
checkArgument(argOIs.length == 2);

// TEST for constant arguments
checkArgument(argOIs[1] instanceof ConstantObjectInspector);
Object constant = ((ConstantObjectInspector) argOIs[1]).getWritableConstantValue();
checkArgument(constant instanceof IntWritable);
checkArgument(((IntWritable) constant).get() == 1);

return ObjectInspectorFactory.getStandardStructObjectInspector(
Collections.singletonList("col1"),
Collections.singletonList(PrimitiveObjectInspectorFactory.javaStringObjectInspector));
}

@Override
public void process(Object[] args) throws HiveException {
String str = (String) args[0];
for (String s : str.split(",")) {
forward(s);
forward(s);
}
}

@Override
public void close() {
}
}

在 Hive CLI 中,可以查询到已经注册的 UDF 函数:

hive> show functions;
OK
......
mygenericudf
myudf
myudtf

此时,用户如果想使用这些 UDF,在 SQL 中就可以这样写:


Flink SQL> select mygenericudf(myudf(name), 1) as a, mygenericudf(myudf(age), 1) as b, s from mysourcetable, lateral table(myudtf(name, 1)) as T(s);